MakeItFrom.com
Menu (ESC)

ASTM B540 Palladium vs. ASTM A285 Carbon Steel

ASTM B540 palladium belongs to the otherwise unclassified metals classification, while ASTM A285 carbon steel belongs to the iron alloys. There are 23 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is ASTM B540 palladium and the bottom bar is ASTM A285 carbon steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 110
190
Elongation at Break, % 1.1 to 14
30 to 34
Fatigue Strength, MPa 350
150 to 180
Poisson's Ratio 0.38
0.29
Shear Modulus, GPa 39
73
Shear Strength, MPa 500 to 700
250 to 290
Tensile Strength: Ultimate (UTS), MPa 830 to 1240
380 to 450
Tensile Strength: Yield (Proof), MPa 620 to 1000
190 to 230

Thermal Properties

Latent Heat of Fusion, J/g 140
250
Melting Completion (Liquidus), °C 1220
1470
Melting Onset (Solidus), °C 1020
1420 to 1430
Specific Heat Capacity, J/kg-K 240
470
Thermal Expansion, µm/m-K 14
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 4.9 to 5.5
7.0
Electrical Conductivity: Equal Weight (Specific), % IACS 3.5 to 3.9
8.0

Otherwise Unclassified Properties

Density, g/cm3 13
7.9

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 13 to 100
110
Resilience: Unit (Modulus of Resilience), kJ/m3 1790 to 4660
94 to 150
Stiffness to Weight: Axial, points 4.7
13
Stiffness to Weight: Bending, points 12
24
Strength to Weight: Axial, points 18 to 27
13 to 16
Strength to Weight: Bending, points 15 to 20
15 to 17
Thermal Shock Resistance, points 41 to 61
12 to 14