MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. 2218 Aluminum

ASTM B817 type I belongs to the titanium alloys classification, while 2218 aluminum belongs to the aluminum alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is 2218 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
73
Elongation at Break, % 4.0 to 13
6.8 to 10
Fatigue Strength, MPa 360 to 520
110
Poisson's Ratio 0.32
0.33
Shear Modulus, GPa 40
27
Tensile Strength: Ultimate (UTS), MPa 770 to 960
330 to 430
Tensile Strength: Yield (Proof), MPa 700 to 860
260 to 310

Thermal Properties

Latent Heat of Fusion, J/g 410
390
Maximum Temperature: Mechanical, °C 340
220
Melting Completion (Liquidus), °C 1600
640
Melting Onset (Solidus), °C 1550
510
Specific Heat Capacity, J/kg-K 560
870
Thermal Conductivity, W/m-K 7.1
140
Thermal Expansion, µm/m-K 9.6
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
37
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
110

Otherwise Unclassified Properties

Base Metal Price, % relative 36
11
Density, g/cm3 4.4
3.1
Embodied Carbon, kg CO2/kg material 38
8.2
Embodied Energy, MJ/kg 610
150
Embodied Water, L/kg 200
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
27 to 31
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
450 to 650
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
45
Strength to Weight: Axial, points 48 to 60
30 to 39
Strength to Weight: Bending, points 42 to 49
34 to 41
Thermal Diffusivity, mm2/s 2.9
52
Thermal Shock Resistance, points 54 to 68
15 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
88.8 to 93.6
Carbon (C), % 0 to 0.1
0
Chlorine (Cl), % 0 to 0.2
0
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 0
3.5 to 4.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 1.0
Magnesium (Mg), % 0
1.2 to 1.8
Manganese (Mn), % 0
0 to 0.2
Nickel (Ni), % 0
1.7 to 2.3
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Silicon (Si), % 0 to 0.1
0 to 0.9
Sodium (Na), % 0 to 0.2
0
Titanium (Ti), % 87 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0 to 0.4
0 to 0.15