MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. ACI-ASTM CA28MWV Steel

ASTM B817 type I belongs to the titanium alloys classification, while ACI-ASTM CA28MWV steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is ACI-ASTM CA28MWV steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Elongation at Break, % 4.0 to 13
11
Fatigue Strength, MPa 360 to 520
470
Poisson's Ratio 0.32
0.28
Reduction in Area, % 5.0 to 29
27
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 770 to 960
1080
Tensile Strength: Yield (Proof), MPa 700 to 860
870

Thermal Properties

Latent Heat of Fusion, J/g 410
270
Maximum Temperature: Mechanical, °C 340
740
Melting Completion (Liquidus), °C 1600
1470
Melting Onset (Solidus), °C 1550
1430
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
25
Thermal Expansion, µm/m-K 9.6
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
4.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
5.3

Otherwise Unclassified Properties

Base Metal Price, % relative 36
11
Density, g/cm3 4.4
7.9
Embodied Carbon, kg CO2/kg material 38
3.1
Embodied Energy, MJ/kg 610
44
Embodied Water, L/kg 200
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
1920
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 48 to 60
38
Strength to Weight: Bending, points 42 to 49
30
Thermal Diffusivity, mm2/s 2.9
6.6
Thermal Shock Resistance, points 54 to 68
40

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0.2 to 0.28
Chlorine (Cl), % 0 to 0.2
0
Chromium (Cr), % 0
11 to 12.5
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
81.4 to 85.8
Manganese (Mn), % 0
0.5 to 1.0
Molybdenum (Mo), % 0
0.9 to 1.3
Nickel (Ni), % 0
0.5 to 1.0
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
0 to 1.0
Sodium (Na), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 87 to 91
0
Tungsten (W), % 0
0.9 to 1.3
Vanadium (V), % 3.5 to 4.5
0.2 to 0.3
Residuals, % 0 to 0.4
0