MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. EN 1.4410 Stainless Steel

ASTM B817 type I belongs to the titanium alloys classification, while EN 1.4410 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is EN 1.4410 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
210
Elongation at Break, % 4.0 to 13
24
Fatigue Strength, MPa 360 to 520
410
Poisson's Ratio 0.32
0.27
Shear Modulus, GPa 40
81
Tensile Strength: Ultimate (UTS), MPa 770 to 960
850
Tensile Strength: Yield (Proof), MPa 700 to 860
600

Thermal Properties

Latent Heat of Fusion, J/g 410
300
Maximum Temperature: Mechanical, °C 340
1100
Melting Completion (Liquidus), °C 1600
1450
Melting Onset (Solidus), °C 1550
1400
Specific Heat Capacity, J/kg-K 560
480
Thermal Conductivity, W/m-K 7.1
15
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 36
20
Density, g/cm3 4.4
7.8
Embodied Carbon, kg CO2/kg material 38
4.0
Embodied Energy, MJ/kg 610
56
Embodied Water, L/kg 200
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
180
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
880
Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 35
25
Strength to Weight: Axial, points 48 to 60
30
Strength to Weight: Bending, points 42 to 49
26
Thermal Diffusivity, mm2/s 2.9
4.0
Thermal Shock Resistance, points 54 to 68
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0 to 0.030
Chlorine (Cl), % 0 to 0.2
0
Chromium (Cr), % 0
24 to 26
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
58.1 to 66.8
Manganese (Mn), % 0
0 to 2.0
Molybdenum (Mo), % 0
3.0 to 4.5
Nickel (Ni), % 0
6.0 to 8.0
Nitrogen (N), % 0 to 0.040
0.24 to 0.35
Oxygen (O), % 0 to 0.3
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.1
0 to 1.0
Sodium (Na), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 87 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0