MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. EN 1.7380 Steel

ASTM B817 type I belongs to the titanium alloys classification, while EN 1.7380 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is EN 1.7380 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 4.0 to 13
19 to 20
Fatigue Strength, MPa 360 to 520
200 to 230
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
74
Tensile Strength: Ultimate (UTS), MPa 770 to 960
540 to 550
Tensile Strength: Yield (Proof), MPa 700 to 860
290 to 330

Thermal Properties

Latent Heat of Fusion, J/g 410
260
Maximum Temperature: Mechanical, °C 340
460
Melting Completion (Liquidus), °C 1600
1470
Melting Onset (Solidus), °C 1550
1430
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
39
Thermal Expansion, µm/m-K 9.6
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.6
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.7

Otherwise Unclassified Properties

Base Metal Price, % relative 36
3.8
Density, g/cm3 4.4
7.9
Embodied Carbon, kg CO2/kg material 38
1.8
Embodied Energy, MJ/kg 610
23
Embodied Water, L/kg 200
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
87 to 98
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
230 to 280
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
24
Strength to Weight: Axial, points 48 to 60
19 to 20
Strength to Weight: Bending, points 42 to 49
19
Thermal Diffusivity, mm2/s 2.9
11
Thermal Shock Resistance, points 54 to 68
15 to 16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0.080 to 0.14
Chlorine (Cl), % 0 to 0.2
0
Chromium (Cr), % 0
2.0 to 2.5
Copper (Cu), % 0
0 to 0.3
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
94.6 to 96.6
Manganese (Mn), % 0
0.4 to 0.8
Molybdenum (Mo), % 0
0.9 to 1.1
Nitrogen (N), % 0 to 0.040
0 to 0.012
Oxygen (O), % 0 to 0.3
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 0 to 0.1
0 to 0.5
Sodium (Na), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 87 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0