MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. CC333G Bronze

ASTM B817 type I belongs to the titanium alloys classification, while CC333G bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is CC333G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 4.0 to 13
13
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
45
Tensile Strength: Ultimate (UTS), MPa 770 to 960
710
Tensile Strength: Yield (Proof), MPa 700 to 860
310

Thermal Properties

Latent Heat of Fusion, J/g 410
230
Maximum Temperature: Mechanical, °C 340
230
Melting Completion (Liquidus), °C 1600
1080
Melting Onset (Solidus), °C 1550
1020
Specific Heat Capacity, J/kg-K 560
440
Thermal Conductivity, W/m-K 7.1
38
Thermal Expansion, µm/m-K 9.6
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 36
29
Density, g/cm3 4.4
8.3
Embodied Carbon, kg CO2/kg material 38
3.5
Embodied Energy, MJ/kg 610
56
Embodied Water, L/kg 200
380

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
75
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
410
Stiffness to Weight: Axial, points 13
8.0
Stiffness to Weight: Bending, points 35
20
Strength to Weight: Axial, points 48 to 60
24
Strength to Weight: Bending, points 42 to 49
21
Thermal Diffusivity, mm2/s 2.9
10
Thermal Shock Resistance, points 54 to 68
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
8.5 to 10.5
Bismuth (Bi), % 0
0 to 0.010
Carbon (C), % 0 to 0.1
0
Chlorine (Cl), % 0 to 0.2
0
Chromium (Cr), % 0
0 to 0.050
Copper (Cu), % 0
76 to 83
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
3.0 to 5.5
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0
0 to 3.0
Nickel (Ni), % 0
3.7 to 6.0
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Silicon (Si), % 0 to 0.1
0 to 0.1
Sodium (Na), % 0 to 0.2
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 87 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
0 to 0.5
Residuals, % 0 to 0.4
0