MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. CC755S Brass

ASTM B817 type I belongs to the titanium alloys classification, while CC755S brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is CC755S brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
100
Elongation at Break, % 4.0 to 13
9.5
Poisson's Ratio 0.32
0.31
Shear Modulus, GPa 40
40
Tensile Strength: Ultimate (UTS), MPa 770 to 960
390
Tensile Strength: Yield (Proof), MPa 700 to 860
250

Thermal Properties

Latent Heat of Fusion, J/g 410
170
Maximum Temperature: Mechanical, °C 340
120
Melting Completion (Liquidus), °C 1600
820
Melting Onset (Solidus), °C 1550
780
Specific Heat Capacity, J/kg-K 560
390
Thermal Conductivity, W/m-K 7.1
120
Thermal Expansion, µm/m-K 9.6
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
27
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
30

Otherwise Unclassified Properties

Base Metal Price, % relative 36
23
Density, g/cm3 4.4
8.1
Embodied Carbon, kg CO2/kg material 38
2.7
Embodied Energy, MJ/kg 610
46
Embodied Water, L/kg 200
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
33
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
290
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 35
19
Strength to Weight: Axial, points 48 to 60
14
Strength to Weight: Bending, points 42 to 49
15
Thermal Diffusivity, mm2/s 2.9
38
Thermal Shock Resistance, points 54 to 68
13

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.5 to 6.8
0.4 to 0.7
Carbon (C), % 0 to 0.1
0
Chlorine (Cl), % 0 to 0.2
0
Copper (Cu), % 0
59.5 to 61
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0.050 to 0.2
Lead (Pb), % 0
1.2 to 1.7
Manganese (Mn), % 0
0 to 0.050
Nickel (Ni), % 0
0 to 0.2
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Silicon (Si), % 0 to 0.1
0 to 0.050
Sodium (Na), % 0 to 0.2
0
Tin (Sn), % 0
0 to 0.3
Titanium (Ti), % 87 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Zinc (Zn), % 0
35.8 to 38.9
Residuals, % 0 to 0.4
0