MakeItFrom.com
Menu (ESC)

ASTM B817 Type I vs. Grade CY40 Nickel

ASTM B817 type I belongs to the titanium alloys classification, while grade CY40 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type I and the bottom bar is grade CY40 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
190
Elongation at Break, % 4.0 to 13
34
Fatigue Strength, MPa 360 to 520
160
Poisson's Ratio 0.32
0.29
Shear Modulus, GPa 40
74
Tensile Strength: Ultimate (UTS), MPa 770 to 960
540
Tensile Strength: Yield (Proof), MPa 700 to 860
220

Thermal Properties

Latent Heat of Fusion, J/g 410
330
Maximum Temperature: Mechanical, °C 340
960
Melting Completion (Liquidus), °C 1600
1350
Melting Onset (Solidus), °C 1550
1300
Specific Heat Capacity, J/kg-K 560
470
Thermal Conductivity, W/m-K 7.1
14
Thermal Expansion, µm/m-K 9.6
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.0
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.0
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 36
55
Density, g/cm3 4.4
8.4
Embodied Carbon, kg CO2/kg material 38
9.1
Embodied Energy, MJ/kg 610
130
Embodied Water, L/kg 200
260

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 30 to 120
150
Resilience: Unit (Modulus of Resilience), kJ/m3 2310 to 3540
130
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 35
23
Strength to Weight: Axial, points 48 to 60
18
Strength to Weight: Bending, points 42 to 49
18
Thermal Diffusivity, mm2/s 2.9
3.7
Thermal Shock Resistance, points 54 to 68
16

Alloy Composition

Aluminum (Al), % 5.5 to 6.8
0
Carbon (C), % 0 to 0.1
0 to 0.4
Chlorine (Cl), % 0 to 0.2
0
Chromium (Cr), % 0
14 to 17
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0 to 0.4
0 to 11
Manganese (Mn), % 0
0 to 1.5
Nickel (Ni), % 0
67 to 86
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.1
0 to 3.0
Sodium (Na), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 87 to 91
0
Vanadium (V), % 3.5 to 4.5
0
Residuals, % 0 to 0.4
0