MakeItFrom.com
Menu (ESC)

ASTM B817 Type II vs. EN 1.4530 Stainless Steel

ASTM B817 type II belongs to the titanium alloys classification, while EN 1.4530 stainless steel belongs to the iron alloys. There are 20 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type II and the bottom bar is EN 1.4530 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
200
Poisson's Ratio 0.32
0.28
Shear Modulus, GPa 40
76
Tensile Strength: Ultimate (UTS), MPa 900 to 960
1030 to 1370

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 350
790
Melting Completion (Liquidus), °C 1580
1460
Melting Onset (Solidus), °C 1530
1410
Specific Heat Capacity, J/kg-K 550
470
Thermal Expansion, µm/m-K 9.9
11

Otherwise Unclassified Properties

Base Metal Price, % relative 37
15
Density, g/cm3 4.6
7.9
Embodied Carbon, kg CO2/kg material 40
3.4
Embodied Energy, MJ/kg 650
46
Embodied Water, L/kg 220
130

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 34
25
Strength to Weight: Axial, points 55 to 58
36 to 48
Strength to Weight: Bending, points 45 to 47
29 to 35
Thermal Shock Resistance, points 62 to 66
35 to 47

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 6.0
0.6 to 0.8
Carbon (C), % 0 to 0.1
0 to 0.015
Chlorine (Cl), % 0 to 0.2
0
Chromium (Cr), % 0
11.5 to 12.5
Copper (Cu), % 0.35 to 1.0
0
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.35 to 1.0
74.4 to 77.3
Manganese (Mn), % 0
0 to 0.1
Molybdenum (Mo), % 0
1.9 to 2.2
Nickel (Ni), % 0
8.5 to 9.5
Nitrogen (N), % 0 to 0.040
0 to 0.010
Oxygen (O), % 0 to 0.3
0
Phosphorus (P), % 0
0 to 0.010
Silicon (Si), % 0 to 0.1
0 to 0.1
Sodium (Na), % 0 to 0.2
0
Sulfur (S), % 0
0 to 0.0050
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 82.1 to 87.8
0.28 to 0.37
Vanadium (V), % 5.0 to 6.0
0
Residuals, % 0 to 0.4
0