MakeItFrom.com
Menu (ESC)

ASTM B817 Type II vs. C14500 Copper

ASTM B817 type II belongs to the titanium alloys classification, while C14500 copper belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type II and the bottom bar is C14500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
120
Elongation at Break, % 3.0 to 13
12 to 50
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 900 to 960
220 to 330
Tensile Strength: Yield (Proof), MPa 780 to 900
69 to 260

Thermal Properties

Latent Heat of Fusion, J/g 400
210
Maximum Temperature: Mechanical, °C 350
200
Melting Completion (Liquidus), °C 1580
1080
Melting Onset (Solidus), °C 1530
1050
Specific Heat Capacity, J/kg-K 550
390
Thermal Expansion, µm/m-K 9.9
17

Otherwise Unclassified Properties

Base Metal Price, % relative 37
33
Density, g/cm3 4.6
8.9
Embodied Carbon, kg CO2/kg material 40
2.6
Embodied Energy, MJ/kg 650
42
Embodied Water, L/kg 220
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 26 to 120
36 to 85
Resilience: Unit (Modulus of Resilience), kJ/m3 2890 to 3890
21 to 300
Stiffness to Weight: Axial, points 13
7.2
Stiffness to Weight: Bending, points 34
18
Strength to Weight: Axial, points 55 to 58
6.8 to 10
Strength to Weight: Bending, points 45 to 47
9.1 to 12
Thermal Shock Resistance, points 62 to 66
8.0 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 6.0
0
Carbon (C), % 0 to 0.1
0
Chlorine (Cl), % 0 to 0.2
0
Copper (Cu), % 0.35 to 1.0
99.2 to 99.596
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.35 to 1.0
0
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Phosphorus (P), % 0
0.0040 to 0.012
Silicon (Si), % 0 to 0.1
0
Sodium (Na), % 0 to 0.2
0
Tellurium (Te), % 0
0.4 to 0.7
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 82.1 to 87.8
0
Vanadium (V), % 5.0 to 6.0
0
Residuals, % 0 to 0.4
0