MakeItFrom.com
Menu (ESC)

ASTM B817 Type II vs. C16500 Copper

ASTM B817 type II belongs to the titanium alloys classification, while C16500 copper belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type II and the bottom bar is C16500 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 3.0 to 13
1.5 to 53
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
43
Tensile Strength: Ultimate (UTS), MPa 900 to 960
280 to 530
Tensile Strength: Yield (Proof), MPa 780 to 900
97 to 520

Thermal Properties

Latent Heat of Fusion, J/g 400
210
Maximum Temperature: Mechanical, °C 350
340
Melting Completion (Liquidus), °C 1580
1070
Melting Onset (Solidus), °C 1530
1010
Specific Heat Capacity, J/kg-K 550
380
Thermal Expansion, µm/m-K 9.9
17

Otherwise Unclassified Properties

Base Metal Price, % relative 37
31
Density, g/cm3 4.6
8.9
Embodied Carbon, kg CO2/kg material 40
2.6
Embodied Energy, MJ/kg 650
42
Embodied Water, L/kg 220
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 26 to 120
7.8 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 2890 to 3890
41 to 1160
Stiffness to Weight: Axial, points 13
7.1
Stiffness to Weight: Bending, points 34
18
Strength to Weight: Axial, points 55 to 58
8.6 to 17
Strength to Weight: Bending, points 45 to 47
11 to 16
Thermal Shock Resistance, points 62 to 66
9.8 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 6.0
0
Cadmium (Cd), % 0
0.6 to 1.0
Carbon (C), % 0 to 0.1
0
Chlorine (Cl), % 0 to 0.2
0
Copper (Cu), % 0.35 to 1.0
97.8 to 98.9
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.35 to 1.0
0 to 0.020
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Silicon (Si), % 0 to 0.1
0
Sodium (Na), % 0 to 0.2
0
Tin (Sn), % 1.5 to 2.5
0.5 to 0.7
Titanium (Ti), % 82.1 to 87.8
0
Vanadium (V), % 5.0 to 6.0
0
Residuals, % 0 to 0.4
0 to 0.5