MakeItFrom.com
Menu (ESC)

ASTM B817 Type II vs. C60800 Bronze

ASTM B817 type II belongs to the titanium alloys classification, while C60800 bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is ASTM B817 type II and the bottom bar is C60800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 100
110
Elongation at Break, % 3.0 to 13
55
Poisson's Ratio 0.32
0.34
Shear Modulus, GPa 40
46
Tensile Strength: Ultimate (UTS), MPa 900 to 960
390
Tensile Strength: Yield (Proof), MPa 780 to 900
150

Thermal Properties

Latent Heat of Fusion, J/g 400
220
Maximum Temperature: Mechanical, °C 350
210
Melting Completion (Liquidus), °C 1580
1060
Melting Onset (Solidus), °C 1530
1050
Specific Heat Capacity, J/kg-K 550
410
Thermal Expansion, µm/m-K 9.9
18

Otherwise Unclassified Properties

Base Metal Price, % relative 37
29
Density, g/cm3 4.6
8.6
Embodied Carbon, kg CO2/kg material 40
2.9
Embodied Energy, MJ/kg 650
48
Embodied Water, L/kg 220
360

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 26 to 120
170
Resilience: Unit (Modulus of Resilience), kJ/m3 2890 to 3890
94
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 34
19
Strength to Weight: Axial, points 55 to 58
13
Strength to Weight: Bending, points 45 to 47
14
Thermal Shock Resistance, points 62 to 66
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 5.0 to 6.0
5.0 to 6.5
Arsenic (As), % 0
0.020 to 0.35
Carbon (C), % 0 to 0.1
0
Chlorine (Cl), % 0 to 0.2
0
Copper (Cu), % 0.35 to 1.0
92.5 to 95
Hydrogen (H), % 0 to 0.015
0
Iron (Fe), % 0.35 to 1.0
0 to 0.1
Lead (Pb), % 0
0 to 0.1
Nitrogen (N), % 0 to 0.040
0
Oxygen (O), % 0 to 0.3
0
Silicon (Si), % 0 to 0.1
0
Sodium (Na), % 0 to 0.2
0
Tin (Sn), % 1.5 to 2.5
0
Titanium (Ti), % 82.1 to 87.8
0
Vanadium (V), % 5.0 to 6.0
0
Residuals, % 0 to 0.4
0 to 0.5