MakeItFrom.com
Menu (ESC)

ASTM Grade HF Steel vs. EN 1.8871 Steel

Both ASTM grade HF steel and EN 1.8871 steel are iron alloys. They have 69% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HF steel and the bottom bar is EN 1.8871 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 160
180
Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 29
22
Fatigue Strength, MPa 200
320
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
73
Tensile Strength: Ultimate (UTS), MPa 550
610
Tensile Strength: Yield (Proof), MPa 270
460

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Maximum Temperature: Mechanical, °C 1000
410
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1370
1420
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 16
39
Thermal Expansion, µm/m-K 16
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 17
2.8
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 3.2
1.7
Embodied Energy, MJ/kg 46
22
Embodied Water, L/kg 150
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
120
Resilience: Unit (Modulus of Resilience), kJ/m3 180
550
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 20
22
Strength to Weight: Bending, points 19
20
Thermal Diffusivity, mm2/s 4.2
10
Thermal Shock Resistance, points 12
18

Alloy Composition

Boron (B), % 0
0 to 0.0050
Carbon (C), % 0.2 to 0.4
0 to 0.18
Chromium (Cr), % 18 to 23
0 to 0.5
Copper (Cu), % 0
0 to 0.3
Iron (Fe), % 60 to 73.8
95.1 to 100
Manganese (Mn), % 0 to 2.0
0 to 1.7
Molybdenum (Mo), % 0 to 0.5
0 to 0.5
Nickel (Ni), % 8.0 to 12
0 to 1.0
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 2.0
0 to 0.5
Sulfur (S), % 0 to 0.040
0 to 0.010
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.080
Zirconium (Zr), % 0
0 to 0.050