MakeItFrom.com
Menu (ESC)

ASTM Grade HF Steel vs. C31400 Bronze

ASTM grade HF steel belongs to the iron alloys classification, while C31400 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HF steel and the bottom bar is C31400 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 29
6.8 to 29
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 77
42
Tensile Strength: Ultimate (UTS), MPa 550
270 to 420
Tensile Strength: Yield (Proof), MPa 270
78 to 310

Thermal Properties

Latent Heat of Fusion, J/g 300
200
Maximum Temperature: Mechanical, °C 1000
180
Melting Completion (Liquidus), °C 1410
1040
Melting Onset (Solidus), °C 1370
1010
Specific Heat Capacity, J/kg-K 480
380
Thermal Conductivity, W/m-K 16
180
Thermal Expansion, µm/m-K 16
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
42
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
43

Otherwise Unclassified Properties

Base Metal Price, % relative 17
29
Density, g/cm3 7.7
8.8
Embodied Carbon, kg CO2/kg material 3.2
2.6
Embodied Energy, MJ/kg 46
42
Embodied Water, L/kg 150
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 130
26 to 59
Resilience: Unit (Modulus of Resilience), kJ/m3 180
28 to 420
Stiffness to Weight: Axial, points 14
7.1
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 20
8.7 to 13
Strength to Weight: Bending, points 19
11 to 14
Thermal Diffusivity, mm2/s 4.2
54
Thermal Shock Resistance, points 12
9.6 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.2 to 0.4
0
Chromium (Cr), % 18 to 23
0
Copper (Cu), % 0
87.5 to 90.5
Iron (Fe), % 60 to 73.8
0 to 0.1
Lead (Pb), % 0
1.3 to 2.5
Manganese (Mn), % 0 to 2.0
0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 8.0 to 12
0 to 0.7
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.0
0
Sulfur (S), % 0 to 0.040
0
Zinc (Zn), % 0
5.8 to 11.2
Residuals, % 0
0 to 0.4