MakeItFrom.com
Menu (ESC)

ASTM Grade HG10 MNN Steel vs. C18900 Copper

ASTM grade HG10 MNN steel belongs to the iron alloys classification, while C18900 copper belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HG10 MNN steel and the bottom bar is C18900 copper.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 23
14 to 48
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 77
43
Tensile Strength: Ultimate (UTS), MPa 590
260 to 500
Tensile Strength: Yield (Proof), MPa 250
67 to 390

Thermal Properties

Latent Heat of Fusion, J/g 290
210
Maximum Temperature: Mechanical, °C 990
200
Melting Completion (Liquidus), °C 1420
1080
Melting Onset (Solidus), °C 1370
1020
Specific Heat Capacity, J/kg-K 480
390
Thermal Conductivity, W/m-K 15
130
Thermal Expansion, µm/m-K 16
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
30
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
30

Otherwise Unclassified Properties

Base Metal Price, % relative 21
31
Density, g/cm3 7.8
8.9
Embodied Carbon, kg CO2/kg material 4.0
2.7
Embodied Energy, MJ/kg 58
42
Embodied Water, L/kg 160
310

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
65 to 95
Resilience: Unit (Modulus of Resilience), kJ/m3 160
20 to 660
Stiffness to Weight: Axial, points 14
7.2
Stiffness to Weight: Bending, points 25
18
Strength to Weight: Axial, points 21
8.2 to 16
Strength to Weight: Bending, points 20
10 to 16
Thermal Diffusivity, mm2/s 3.9
38
Thermal Shock Resistance, points 13
9.3 to 18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.010
Carbon (C), % 0.070 to 0.11
0
Chromium (Cr), % 18.5 to 20.5
0
Copper (Cu), % 0 to 0.5
97.7 to 99.15
Iron (Fe), % 57.9 to 66.5
0
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 3.0 to 5.0
0.1 to 0.3
Molybdenum (Mo), % 0.25 to 0.45
0
Nickel (Ni), % 11.5 to 13.5
0
Niobium (Nb), % 0.2 to 1.0
0
Nitrogen (N), % 0.2 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 0.7
0.15 to 0.4
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0.6 to 0.9
Zinc (Zn), % 0
0 to 0.1
Residuals, % 0
0 to 0.5