MakeItFrom.com
Menu (ESC)

ASTM Grade HT Steel vs. 6016 Aluminum

ASTM grade HT steel belongs to the iron alloys classification, while 6016 aluminum belongs to the aluminum alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is ASTM grade HT steel and the bottom bar is 6016 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 150
55 to 80
Elastic (Young's, Tensile) Modulus, GPa 190
69
Elongation at Break, % 4.6
11 to 27
Fatigue Strength, MPa 130
68 to 89
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 500
200 to 280
Tensile Strength: Yield (Proof), MPa 270
110 to 210

Thermal Properties

Latent Heat of Fusion, J/g 310
410
Maximum Temperature: Mechanical, °C 1010
160
Melting Completion (Liquidus), °C 1390
660
Melting Onset (Solidus), °C 1340
610
Specific Heat Capacity, J/kg-K 480
900
Thermal Conductivity, W/m-K 12
190 to 210
Thermal Expansion, µm/m-K 15
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
48 to 54
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
160 to 180

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.0
2.7
Embodied Carbon, kg CO2/kg material 5.4
8.2
Embodied Energy, MJ/kg 76
150
Embodied Water, L/kg 190
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
29 to 47
Resilience: Unit (Modulus of Resilience), kJ/m3 180
82 to 340
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
51
Strength to Weight: Axial, points 18
21 to 29
Strength to Weight: Bending, points 18
29 to 35
Thermal Diffusivity, mm2/s 3.2
77 to 86
Thermal Shock Resistance, points 12
9.1 to 12

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
96.4 to 98.8
Carbon (C), % 0.35 to 0.75
0
Chromium (Cr), % 15 to 19
0 to 0.1
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 38.2 to 51.7
0 to 0.5
Magnesium (Mg), % 0
0.25 to 0.6
Manganese (Mn), % 0 to 2.0
0 to 0.2
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 33 to 37
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.5
1.0 to 1.5
Sulfur (S), % 0 to 0.040
0
Titanium (Ti), % 0
0 to 0.15
Zinc (Zn), % 0
0 to 0.2
Residuals, % 0
0 to 0.15