MakeItFrom.com
Menu (ESC)

ASTM Grade HT Steel vs. C62500 Bronze

ASTM grade HT steel belongs to the iron alloys classification, while C62500 bronze belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM grade HT steel and the bottom bar is C62500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 4.6
1.0
Fatigue Strength, MPa 130
460
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 76
42
Tensile Strength: Ultimate (UTS), MPa 500
690
Tensile Strength: Yield (Proof), MPa 270
410

Thermal Properties

Latent Heat of Fusion, J/g 310
230
Maximum Temperature: Mechanical, °C 1010
230
Melting Completion (Liquidus), °C 1390
1050
Melting Onset (Solidus), °C 1340
1050
Specific Heat Capacity, J/kg-K 480
460
Thermal Conductivity, W/m-K 12
47
Thermal Expansion, µm/m-K 15
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
10
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
11

Otherwise Unclassified Properties

Base Metal Price, % relative 31
26
Density, g/cm3 8.0
8.1
Embodied Carbon, kg CO2/kg material 5.4
3.3
Embodied Energy, MJ/kg 76
55
Embodied Water, L/kg 190
410

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 19
6.0
Resilience: Unit (Modulus of Resilience), kJ/m3 180
750
Stiffness to Weight: Axial, points 13
7.8
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 18
24
Strength to Weight: Bending, points 18
22
Thermal Diffusivity, mm2/s 3.2
13
Thermal Shock Resistance, points 12
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
12.5 to 13.5
Carbon (C), % 0.35 to 0.75
0
Chromium (Cr), % 15 to 19
0
Copper (Cu), % 0
78.5 to 84
Iron (Fe), % 38.2 to 51.7
3.5 to 5.5
Manganese (Mn), % 0 to 2.0
0 to 2.0
Molybdenum (Mo), % 0 to 0.5
0
Nickel (Ni), % 33 to 37
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 2.5
0
Sulfur (S), % 0 to 0.040
0
Residuals, % 0
0 to 0.5