MakeItFrom.com
Menu (ESC)

ASTM Grade LC2-1 Steel vs. C62300 Bronze

ASTM grade LC2-1 steel belongs to the iron alloys classification, while C62300 bronze belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC2-1 steel and the bottom bar is C62300 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
110
Elongation at Break, % 20
18 to 32
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
43
Tensile Strength: Ultimate (UTS), MPa 810
570 to 630
Tensile Strength: Yield (Proof), MPa 630
230 to 310

Thermal Properties

Latent Heat of Fusion, J/g 260
230
Maximum Temperature: Mechanical, °C 450
220
Melting Completion (Liquidus), °C 1460
1050
Melting Onset (Solidus), °C 1420
1040
Specific Heat Capacity, J/kg-K 470
440
Thermal Conductivity, W/m-K 46
54
Thermal Expansion, µm/m-K 13
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.0
12
Electrical Conductivity: Equal Weight (Specific), % IACS 9.1
13

Otherwise Unclassified Properties

Base Metal Price, % relative 5.0
28
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 1.9
3.1
Embodied Energy, MJ/kg 25
52
Embodied Water, L/kg 60
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 150
95 to 150
Resilience: Unit (Modulus of Resilience), kJ/m3 1040
240 to 430
Stiffness to Weight: Axial, points 13
7.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 29
19 to 21
Strength to Weight: Bending, points 25
18 to 20
Thermal Diffusivity, mm2/s 12
15
Thermal Shock Resistance, points 24
20 to 22

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
8.5 to 10
Carbon (C), % 0 to 0.22
0
Chromium (Cr), % 1.4 to 1.9
0
Copper (Cu), % 0
83.2 to 89.5
Iron (Fe), % 92.5 to 95.3
2.0 to 4.0
Manganese (Mn), % 0.55 to 0.75
0 to 0.5
Molybdenum (Mo), % 0.3 to 0.6
0
Nickel (Ni), % 2.5 to 3.5
0 to 1.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.5
0 to 0.25
Sulfur (S), % 0 to 0.045
0
Tin (Sn), % 0
0 to 0.6
Residuals, % 0
0 to 0.5