MakeItFrom.com
Menu (ESC)

ASTM Grade LC9 Steel vs. C67500 Bronze

ASTM grade LC9 steel belongs to the iron alloys classification, while C67500 bronze belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC9 steel and the bottom bar is C67500 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 22
14 to 33
Poisson's Ratio 0.29
0.3
Shear Modulus, GPa 73
40
Tensile Strength: Ultimate (UTS), MPa 660
430 to 580
Tensile Strength: Yield (Proof), MPa 590
170 to 370

Thermal Properties

Latent Heat of Fusion, J/g 260
170
Maximum Temperature: Mechanical, °C 430
120
Melting Completion (Liquidus), °C 1450
890
Melting Onset (Solidus), °C 1410
870
Specific Heat Capacity, J/kg-K 470
390
Thermal Expansion, µm/m-K 13
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
24
Electrical Conductivity: Equal Weight (Specific), % IACS 10
27

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
23
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 2.3
2.8
Embodied Energy, MJ/kg 31
47
Embodied Water, L/kg 65
330

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
61 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 920
130 to 650
Stiffness to Weight: Axial, points 13
7.3
Stiffness to Weight: Bending, points 24
20
Strength to Weight: Axial, points 23
15 to 20
Strength to Weight: Bending, points 21
16 to 19
Thermal Shock Resistance, points 20
14 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.25
Carbon (C), % 0 to 0.13
0
Chromium (Cr), % 0 to 0.5
0
Copper (Cu), % 0 to 0.3
57 to 60
Iron (Fe), % 87.4 to 91.5
0.8 to 2.0
Lead (Pb), % 0
0 to 0.2
Manganese (Mn), % 0 to 0.9
0.050 to 0.5
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 8.5 to 10
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.45
0
Sulfur (S), % 0 to 0.045
0
Tin (Sn), % 0
0.5 to 1.5
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
35.1 to 41.7
Residuals, % 0
0 to 0.5