MakeItFrom.com
Menu (ESC)

ASTM Grade LC9 Steel vs. C84400 Valve Metal

ASTM grade LC9 steel belongs to the iron alloys classification, while C84400 valve metal belongs to the copper alloys. There are 26 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LC9 steel and the bottom bar is C84400 valve metal.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 22
19
Poisson's Ratio 0.29
0.34
Shear Modulus, GPa 73
39
Tensile Strength: Ultimate (UTS), MPa 660
230
Tensile Strength: Yield (Proof), MPa 590
110

Thermal Properties

Latent Heat of Fusion, J/g 260
180
Maximum Temperature: Mechanical, °C 430
160
Melting Completion (Liquidus), °C 1450
1000
Melting Onset (Solidus), °C 1410
840
Specific Heat Capacity, J/kg-K 470
370
Thermal Expansion, µm/m-K 13
19

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 8.9
16
Electrical Conductivity: Equal Weight (Specific), % IACS 10
17

Otherwise Unclassified Properties

Base Metal Price, % relative 8.0
29
Density, g/cm3 7.9
8.8
Embodied Carbon, kg CO2/kg material 2.3
2.8
Embodied Energy, MJ/kg 31
46
Embodied Water, L/kg 65
340

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 140
36
Resilience: Unit (Modulus of Resilience), kJ/m3 920
58
Stiffness to Weight: Axial, points 13
6.6
Stiffness to Weight: Bending, points 24
18
Strength to Weight: Axial, points 23
7.2
Strength to Weight: Bending, points 21
9.4
Thermal Shock Resistance, points 20
8.3

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.0050
Antimony (Sb), % 0
0 to 0.25
Carbon (C), % 0 to 0.13
0
Chromium (Cr), % 0 to 0.5
0
Copper (Cu), % 0 to 0.3
78 to 82
Iron (Fe), % 87.4 to 91.5
0 to 0.4
Lead (Pb), % 0
6.0 to 8.0
Manganese (Mn), % 0 to 0.9
0
Molybdenum (Mo), % 0 to 0.2
0
Nickel (Ni), % 8.5 to 10
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 1.5
Silicon (Si), % 0 to 0.45
0 to 0.0050
Sulfur (S), % 0 to 0.045
0 to 0.080
Tin (Sn), % 0
2.3 to 3.5
Vanadium (V), % 0 to 0.030
0
Zinc (Zn), % 0
7.0 to 10
Residuals, % 0
0 to 0.7