MakeItFrom.com
Menu (ESC)

ASTM Grade LCA Steel vs. ASTM B817 Type I

ASTM grade LCA steel belongs to the iron alloys classification, while ASTM B817 type I belongs to the titanium alloys.

For each property being compared, the top bar is ASTM grade LCA steel and the bottom bar is ASTM B817 type I.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 27
4.0 to 13
Fatigue Strength, MPa 170
360 to 520
Poisson's Ratio 0.29
0.32
Reduction in Area, % 40
5.0 to 29
Shear Modulus, GPa 72
40
Tensile Strength: Ultimate (UTS), MPa 500
770 to 960
Tensile Strength: Yield (Proof), MPa 230
700 to 860

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 400
340
Melting Completion (Liquidus), °C 1460
1600
Melting Onset (Solidus), °C 1410
1550
Specific Heat Capacity, J/kg-K 470
560
Thermal Conductivity, W/m-K 49
7.1
Thermal Expansion, µm/m-K 12
9.6

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
2.0

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
36
Density, g/cm3 7.8
4.4
Embodied Carbon, kg CO2/kg material 1.4
38
Embodied Energy, MJ/kg 19
610
Embodied Water, L/kg 46
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
30 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 150
2310 to 3540
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 18
48 to 60
Strength to Weight: Bending, points 18
42 to 49
Thermal Diffusivity, mm2/s 14
2.9
Thermal Shock Resistance, points 16
54 to 68

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
5.5 to 6.8
Carbon (C), % 0 to 0.25
0 to 0.1
Chlorine (Cl), % 0
0 to 0.2
Copper (Cu), % 0 to 0.3
0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 96.9 to 100
0 to 0.4
Manganese (Mn), % 0 to 0.7
0
Molybdenum (Mo), % 0 to 0.2
0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.3
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.6
0 to 0.1
Sodium (Na), % 0
0 to 0.2
Sulfur (S), % 0 to 0.045
0
Titanium (Ti), % 0
87 to 91
Vanadium (V), % 0
3.5 to 4.5
Residuals, % 0 to 1.0
0 to 0.4