MakeItFrom.com
Menu (ESC)

ASTM Grade LCA Steel vs. EN 1.0920 Steel

Both ASTM grade LCA steel and EN 1.0920 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCA steel and the bottom bar is EN 1.0920 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
23
Fatigue Strength, MPa 170
270
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
73
Tensile Strength: Ultimate (UTS), MPa 500
540
Tensile Strength: Yield (Proof), MPa 230
380

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
50
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.5

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
2.4
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.6
Embodied Energy, MJ/kg 19
22
Embodied Water, L/kg 46
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
110
Resilience: Unit (Modulus of Resilience), kJ/m3 150
380
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 18
19
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 16
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.25
0 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0 to 0.3
0 to 0.35
Iron (Fe), % 96.9 to 100
96.1 to 99.08
Manganese (Mn), % 0 to 0.7
0.9 to 1.7
Molybdenum (Mo), % 0 to 0.2
0 to 0.1
Nickel (Ni), % 0
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0 to 0.045
0 to 0.030
Titanium (Ti), % 0
0 to 0.030
Vanadium (V), % 0
0 to 0.12
Residuals, % 0 to 1.0
0