MakeItFrom.com
Menu (ESC)

ASTM Grade LCA Steel vs. EN 1.6580 Steel

Both ASTM grade LCA steel and EN 1.6580 steel are iron alloys. They have a very high 95% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCA steel and the bottom bar is EN 1.6580 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
11 to 19
Fatigue Strength, MPa 170
310 to 610
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
73
Tensile Strength: Ultimate (UTS), MPa 500
720 to 1170
Tensile Strength: Yield (Proof), MPa 230
460 to 990

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
450
Melting Completion (Liquidus), °C 1460
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
40
Thermal Expansion, µm/m-K 12
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.2
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 8.3
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 1.9
4.3
Density, g/cm3 7.8
7.9
Embodied Carbon, kg CO2/kg material 1.4
1.8
Embodied Energy, MJ/kg 19
23
Embodied Water, L/kg 46
59

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 110
120 to 130
Resilience: Unit (Modulus of Resilience), kJ/m3 150
560 to 2590
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 18
26 to 41
Strength to Weight: Bending, points 18
23 to 31
Thermal Diffusivity, mm2/s 14
11
Thermal Shock Resistance, points 16
21 to 34

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.25
0.26 to 0.34
Chromium (Cr), % 0
1.8 to 2.2
Copper (Cu), % 0 to 0.3
0
Iron (Fe), % 96.9 to 100
93.7 to 95.5
Manganese (Mn), % 0 to 0.7
0.3 to 0.6
Molybdenum (Mo), % 0 to 0.2
0.3 to 0.5
Nickel (Ni), % 0
1.8 to 2.2
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 0.6
0 to 0.4
Sulfur (S), % 0 to 0.045
0 to 0.035
Residuals, % 0 to 1.0
0