MakeItFrom.com
Menu (ESC)

ASTM Grade LCB Steel vs. EN 1.0571 Steel

Both ASTM grade LCB steel and EN 1.0571 steel are iron alloys. They have a very high 99% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCB steel and the bottom bar is EN 1.0571 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 27
23
Fatigue Strength, MPa 200
220
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
73
Tensile Strength: Ultimate (UTS), MPa 540
550
Tensile Strength: Yield (Proof), MPa 270
310

Thermal Properties

Latent Heat of Fusion, J/g 250
250
Maximum Temperature: Mechanical, °C 400
400
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 51
52
Thermal Expansion, µm/m-K 12
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.1
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 8.2
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.3
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.6
Embodied Energy, MJ/kg 18
21
Embodied Water, L/kg 45
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 200
260
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 19
19
Strength to Weight: Bending, points 19
19
Thermal Diffusivity, mm2/s 14
14
Thermal Shock Resistance, points 17
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.060
Carbon (C), % 0 to 0.3
0 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 0
0 to 0.2
Iron (Fe), % 97 to 100
96.5 to 99
Manganese (Mn), % 0 to 1.0
0.9 to 1.7
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.025
Silicon (Si), % 0 to 0.6
0.1 to 0.5
Sulfur (S), % 0 to 0.045
0 to 0.015
Vanadium (V), % 0
0 to 0.1
Residuals, % 0 to 1.0
0