MakeItFrom.com
Menu (ESC)

ASTM Grade LCC Steel vs. ASTM A182 Grade F11 Class 2

Both ASTM grade LCC steel and ASTM A182 grade F11 class 2 are iron alloys. They have a very high 98% of their average alloy composition in common. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCC steel and the bottom bar is ASTM A182 grade F11 class 2.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
180
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 25
22
Fatigue Strength, MPa 230
220
Poisson's Ratio 0.29
0.29
Reduction in Area, % 40
34
Shear Modulus, GPa 72
73
Tensile Strength: Ultimate (UTS), MPa 570
540
Tensile Strength: Yield (Proof), MPa 310
310

Thermal Properties

Latent Heat of Fusion, J/g 250
260
Maximum Temperature: Mechanical, °C 400
430
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1410
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
39
Thermal Expansion, µm/m-K 13
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
7.4
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
2.9
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
1.6
Embodied Energy, MJ/kg 18
21
Embodied Water, L/kg 45
53

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
100
Resilience: Unit (Modulus of Resilience), kJ/m3 260
260
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
19
Strength to Weight: Bending, points 20
19
Thermal Diffusivity, mm2/s 13
11
Thermal Shock Resistance, points 17
16

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.25
0.1 to 0.2
Chromium (Cr), % 0
1.0 to 1.5
Iron (Fe), % 96.9 to 100
95.8 to 97.7
Manganese (Mn), % 0 to 1.2
0.3 to 0.8
Molybdenum (Mo), % 0
0.44 to 0.65
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.6
0.5 to 1.0
Sulfur (S), % 0 to 0.045
0 to 0.040
Residuals, % 0 to 1.0
0