MakeItFrom.com
Menu (ESC)

ASTM Grade LCC Steel vs. EN 1.4713 Stainless Steel

Both ASTM grade LCC steel and EN 1.4713 stainless steel are iron alloys. They have a moderately high 92% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCC steel and the bottom bar is EN 1.4713 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
170
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 25
20
Fatigue Strength, MPa 230
160
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
74
Tensile Strength: Ultimate (UTS), MPa 570
520
Tensile Strength: Yield (Proof), MPa 310
250

Thermal Properties

Latent Heat of Fusion, J/g 250
270
Maximum Temperature: Mechanical, °C 400
800
Melting Completion (Liquidus), °C 1450
1440
Melting Onset (Solidus), °C 1410
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 49
23
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.5
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.9

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
4.6
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.4
1.7
Embodied Energy, MJ/kg 18
24
Embodied Water, L/kg 45
84

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
84
Resilience: Unit (Modulus of Resilience), kJ/m3 260
160
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
19
Strength to Weight: Bending, points 20
19
Thermal Diffusivity, mm2/s 13
6.2
Thermal Shock Resistance, points 17
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0.5 to 1.0
Carbon (C), % 0 to 0.25
0 to 0.12
Chromium (Cr), % 0
6.0 to 8.0
Iron (Fe), % 96.9 to 100
88.8 to 93
Manganese (Mn), % 0 to 1.2
0 to 1.0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.6
0.5 to 1.0
Sulfur (S), % 0 to 0.045
0 to 0.015
Residuals, % 0 to 1.0
0