MakeItFrom.com
Menu (ESC)

ASTM Grade LCC Steel vs. EN 2.4951 Nickel

ASTM grade LCC steel belongs to the iron alloys classification, while EN 2.4951 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCC steel and the bottom bar is EN 2.4951 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
200
Elastic (Young's, Tensile) Modulus, GPa 190
190
Elongation at Break, % 25
34
Fatigue Strength, MPa 230
200
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 72
76
Tensile Strength: Ultimate (UTS), MPa 570
750
Tensile Strength: Yield (Proof), MPa 310
270

Thermal Properties

Latent Heat of Fusion, J/g 250
320
Maximum Temperature: Mechanical, °C 400
1150
Melting Completion (Liquidus), °C 1450
1360
Melting Onset (Solidus), °C 1410
1310
Specific Heat Capacity, J/kg-K 470
460
Thermal Conductivity, W/m-K 49
12
Thermal Expansion, µm/m-K 13
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
60
Density, g/cm3 7.8
8.5
Embodied Carbon, kg CO2/kg material 1.4
9.3
Embodied Energy, MJ/kg 18
130
Embodied Water, L/kg 45
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
200
Resilience: Unit (Modulus of Resilience), kJ/m3 260
190
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
23
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 13
3.1
Thermal Shock Resistance, points 17
23

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.3
Carbon (C), % 0 to 0.25
0.080 to 0.15
Chromium (Cr), % 0
18 to 21
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 96.9 to 100
0 to 5.0
Manganese (Mn), % 0 to 1.2
0 to 1.0
Nickel (Ni), % 0
65.4 to 81.7
Phosphorus (P), % 0 to 0.040
0 to 0.020
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.045
0 to 0.015
Titanium (Ti), % 0
0.2 to 0.6
Residuals, % 0 to 1.0
0