MakeItFrom.com
Menu (ESC)

ASTM Grade LCC Steel vs. Titanium 6-5-0.5

ASTM grade LCC steel belongs to the iron alloys classification, while titanium 6-5-0.5 belongs to the titanium alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCC steel and the bottom bar is titanium 6-5-0.5.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
100
Elongation at Break, % 25
6.7
Fatigue Strength, MPa 230
530
Poisson's Ratio 0.29
0.32
Reduction in Area, % 40
23
Shear Modulus, GPa 72
40
Tensile Strength: Ultimate (UTS), MPa 570
1080
Tensile Strength: Yield (Proof), MPa 310
990

Thermal Properties

Latent Heat of Fusion, J/g 250
410
Maximum Temperature: Mechanical, °C 400
300
Melting Completion (Liquidus), °C 1450
1610
Melting Onset (Solidus), °C 1410
1560
Specific Heat Capacity, J/kg-K 470
550
Thermal Conductivity, W/m-K 49
4.2
Thermal Expansion, µm/m-K 13
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
1.0
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
41
Density, g/cm3 7.8
4.5
Embodied Carbon, kg CO2/kg material 1.4
33
Embodied Energy, MJ/kg 18
540
Embodied Water, L/kg 45
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
71
Resilience: Unit (Modulus of Resilience), kJ/m3 260
4630
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
35
Strength to Weight: Axial, points 20
67
Strength to Weight: Bending, points 20
52
Thermal Diffusivity, mm2/s 13
1.7
Thermal Shock Resistance, points 17
79

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
5.7 to 6.3
Carbon (C), % 0 to 0.25
0 to 0.080
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 96.9 to 100
0 to 0.2
Manganese (Mn), % 0 to 1.2
0
Molybdenum (Mo), % 0
0.25 to 0.75
Nitrogen (N), % 0
0 to 0.050
Oxygen (O), % 0
0 to 0.19
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.6
0 to 0.4
Sulfur (S), % 0 to 0.045
0
Titanium (Ti), % 0
85.6 to 90.1
Zirconium (Zr), % 0
4.0 to 6.0
Residuals, % 0 to 1.0
0 to 0.4