MakeItFrom.com
Menu (ESC)

ASTM Grade LCC Steel vs. Titanium 6-6-2

ASTM grade LCC steel belongs to the iron alloys classification, while titanium 6-6-2 belongs to the titanium alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCC steel and the bottom bar is titanium 6-6-2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
120
Elongation at Break, % 25
6.7 to 9.0
Fatigue Strength, MPa 230
590 to 670
Poisson's Ratio 0.29
0.32
Reduction in Area, % 40
17 to 23
Shear Modulus, GPa 72
44
Tensile Strength: Ultimate (UTS), MPa 570
1140 to 1370
Tensile Strength: Yield (Proof), MPa 310
1040 to 1230

Thermal Properties

Latent Heat of Fusion, J/g 250
400
Maximum Temperature: Mechanical, °C 400
310
Melting Completion (Liquidus), °C 1450
1610
Melting Onset (Solidus), °C 1410
1560
Specific Heat Capacity, J/kg-K 470
540
Thermal Conductivity, W/m-K 49
5.5
Thermal Expansion, µm/m-K 13
9.4

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
1.1
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
40
Density, g/cm3 7.8
4.8
Embodied Carbon, kg CO2/kg material 1.4
29
Embodied Energy, MJ/kg 18
470
Embodied Water, L/kg 45
200

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
89 to 99
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
34
Strength to Weight: Axial, points 20
66 to 79
Strength to Weight: Bending, points 20
50 to 57
Thermal Diffusivity, mm2/s 13
2.1
Thermal Shock Resistance, points 17
75 to 90

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
5.0 to 6.0
Carbon (C), % 0 to 0.25
0 to 0.050
Copper (Cu), % 0
0.35 to 1.0
Hydrogen (H), % 0
0 to 0.015
Iron (Fe), % 96.9 to 100
0.35 to 1.0
Manganese (Mn), % 0 to 1.2
0
Molybdenum (Mo), % 0
5.0 to 6.0
Nitrogen (N), % 0
0 to 0.040
Oxygen (O), % 0
0 to 0.2
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 0.6
0
Sulfur (S), % 0 to 0.045
0
Tin (Sn), % 0
1.5 to 2.5
Titanium (Ti), % 0
82.8 to 87.8
Residuals, % 0 to 1.0
0 to 0.4