MakeItFrom.com
Menu (ESC)

ASTM Grade LCC Steel vs. S42030 Stainless Steel

Both ASTM grade LCC steel and S42030 stainless steel are iron alloys. They have 82% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCC steel and the bottom bar is S42030 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 25
16
Fatigue Strength, MPa 230
250
Poisson's Ratio 0.29
0.28
Shear Modulus, GPa 72
76
Tensile Strength: Ultimate (UTS), MPa 570
670
Tensile Strength: Yield (Proof), MPa 310
410

Thermal Properties

Latent Heat of Fusion, J/g 250
280
Maximum Temperature: Mechanical, °C 400
780
Melting Completion (Liquidus), °C 1450
1450
Melting Onset (Solidus), °C 1410
1410
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 49
28
Thermal Expansion, µm/m-K 13
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.7
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
10
Density, g/cm3 7.8
7.8
Embodied Carbon, kg CO2/kg material 1.4
2.5
Embodied Energy, MJ/kg 18
34
Embodied Water, L/kg 45
110

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
92
Resilience: Unit (Modulus of Resilience), kJ/m3 260
440
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
24
Strength to Weight: Bending, points 20
22
Thermal Diffusivity, mm2/s 13
7.7
Thermal Shock Resistance, points 17
24

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Carbon (C), % 0 to 0.25
0 to 0.3
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 0
2.0 to 3.0
Iron (Fe), % 96.9 to 100
77.6 to 85
Manganese (Mn), % 0 to 1.2
0 to 1.0
Molybdenum (Mo), % 0
1.0 to 3.0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0 to 0.045
0 to 0.030
Residuals, % 0 to 1.0
0