MakeItFrom.com
Menu (ESC)

ASTM Grade LCC Steel vs. S44535 Stainless Steel

Both ASTM grade LCC steel and S44535 stainless steel are iron alloys. They have 77% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is ASTM grade LCC steel and the bottom bar is S44535 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 170
170
Elastic (Young's, Tensile) Modulus, GPa 190
200
Elongation at Break, % 25
28
Fatigue Strength, MPa 230
210
Poisson's Ratio 0.29
0.27
Shear Modulus, GPa 72
78
Tensile Strength: Ultimate (UTS), MPa 570
450
Tensile Strength: Yield (Proof), MPa 310
290

Thermal Properties

Latent Heat of Fusion, J/g 250
290
Maximum Temperature: Mechanical, °C 400
1000
Melting Completion (Liquidus), °C 1450
1430
Melting Onset (Solidus), °C 1410
1390
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 49
21
Thermal Expansion, µm/m-K 13
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 7.3
2.6
Electrical Conductivity: Equal Weight (Specific), % IACS 8.4
3.1

Otherwise Unclassified Properties

Base Metal Price, % relative 1.8
11
Density, g/cm3 7.8
7.7
Embodied Carbon, kg CO2/kg material 1.4
2.4
Embodied Energy, MJ/kg 18
34
Embodied Water, L/kg 45
140

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 120
110
Resilience: Unit (Modulus of Resilience), kJ/m3 260
200
Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
16
Strength to Weight: Bending, points 20
17
Thermal Diffusivity, mm2/s 13
5.6
Thermal Shock Resistance, points 17
15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0
0 to 0.5
Carbon (C), % 0 to 0.25
0 to 0.030
Chromium (Cr), % 0
20 to 24
Copper (Cu), % 0
0 to 0.5
Iron (Fe), % 96.9 to 100
73.2 to 79.6
Lanthanum (La), % 0
0.040 to 0.2
Manganese (Mn), % 0 to 1.2
0.3 to 0.8
Phosphorus (P), % 0 to 0.040
0 to 0.050
Silicon (Si), % 0 to 0.6
0 to 0.5
Sulfur (S), % 0 to 0.045
0 to 0.020
Titanium (Ti), % 0
0.030 to 0.2
Residuals, % 0 to 1.0
0