MakeItFrom.com
Menu (ESC)

AWS BNi-1 vs. AZ91A Magnesium

AWS BNi-1 belongs to the nickel alloys classification, while AZ91A magnesium belongs to the magnesium alloys. There are 19 material properties with values for both materials. Properties with values for just one material (15, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS BNi-1 and the bottom bar is AZ91A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
46
Poisson's Ratio 0.3
0.29
Shear Modulus, GPa 70
18
Tensile Strength: Ultimate (UTS), MPa 450
240

Thermal Properties

Latent Heat of Fusion, J/g 360
360
Melting Completion (Liquidus), °C 1040
600
Melting Onset (Solidus), °C 980
470
Specific Heat Capacity, J/kg-K 500
990
Thermal Expansion, µm/m-K 12
26

Otherwise Unclassified Properties

Base Metal Price, % relative 55
12
Density, g/cm3 8.0
1.7
Embodied Carbon, kg CO2/kg material 8.8
22
Embodied Energy, MJ/kg 120
160
Embodied Water, L/kg 240
990

Common Calculations

Stiffness to Weight: Axial, points 13
15
Stiffness to Weight: Bending, points 24
69
Strength to Weight: Axial, points 16
38
Strength to Weight: Bending, points 16
49
Thermal Shock Resistance, points 15
14

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 452
Aluminum (Al), % 0 to 0.050
8.3 to 9.7
Boron (B), % 2.8 to 3.5
0
Carbon (C), % 0.6 to 0.9
0
Chromium (Cr), % 13 to 15
0
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 0
0 to 0.1
Iron (Fe), % 4.0 to 5.0
0
Magnesium (Mg), % 0
88.2 to 91.2
Manganese (Mn), % 0
0.13 to 0.5
Nickel (Ni), % 69.8 to 75.7
0 to 0.030
Phosphorus (P), % 0 to 0.020
0
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 4.0 to 5.0
0 to 0.5
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0 to 0.050
0
Zinc (Zn), % 0
0.35 to 1.0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0 to 0.5
0