MakeItFrom.com
Menu (ESC)

AWS BNi-4 vs. C95600 Bronze

AWS BNi-4 belongs to the nickel alloys classification, while C95600 bronze belongs to the copper alloys. There are 19 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-4 and the bottom bar is C95600 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 180
110
Poisson's Ratio 0.31
0.34
Shear Modulus, GPa 67
42
Tensile Strength: Ultimate (UTS), MPa 430
500

Thermal Properties

Latent Heat of Fusion, J/g 340
260
Melting Completion (Liquidus), °C 1070
1000
Melting Onset (Solidus), °C 980
980
Specific Heat Capacity, J/kg-K 470
430
Thermal Expansion, µm/m-K 11
17

Otherwise Unclassified Properties

Base Metal Price, % relative 60
28
Density, g/cm3 8.5
8.3
Embodied Carbon, kg CO2/kg material 10
3.0
Embodied Energy, MJ/kg 140
50
Embodied Water, L/kg 220
360

Common Calculations

Stiffness to Weight: Axial, points 12
7.5
Stiffness to Weight: Bending, points 22
19
Strength to Weight: Axial, points 14
17
Strength to Weight: Bending, points 15
17
Thermal Shock Resistance, points 16
18

Alloy Composition

Aluminum (Al), % 0 to 0.050
6.0 to 8.0
Boron (B), % 1.5 to 2.2
0
Carbon (C), % 0 to 0.060
0
Cobalt (Co), % 0 to 0.1
0
Copper (Cu), % 0
88 to 92.2
Iron (Fe), % 0 to 1.5
0
Nickel (Ni), % 91.4 to 95.5
0 to 0.25
Phosphorus (P), % 0 to 0.020
0
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 3.0 to 4.0
1.8 to 3.2
Sulfur (S), % 0 to 0.020
0
Titanium (Ti), % 0 to 0.050
0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0
0 to 1.0