MakeItFrom.com
Menu (ESC)

AWS BNi-9 vs. ASTM Grade LCB Steel

AWS BNi-9 belongs to the nickel alloys classification, while ASTM grade LCB steel belongs to the iron alloys. There are 19 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown.

For each property being compared, the top bar is AWS BNi-9 and the bottom bar is ASTM grade LCB steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
190
Poisson's Ratio 0.3
0.29
Shear Modulus, GPa 72
72
Tensile Strength: Ultimate (UTS), MPa 580
540

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Melting Completion (Liquidus), °C 1060
1450
Melting Onset (Solidus), °C 1060
1410
Specific Heat Capacity, J/kg-K 480
470
Thermal Expansion, µm/m-K 12
12

Otherwise Unclassified Properties

Base Metal Price, % relative 60
1.8
Density, g/cm3 8.4
7.8
Embodied Carbon, kg CO2/kg material 9.3
1.4
Embodied Energy, MJ/kg 130
18
Embodied Water, L/kg 260
45

Common Calculations

Stiffness to Weight: Axial, points 12
13
Stiffness to Weight: Bending, points 23
24
Strength to Weight: Axial, points 19
19
Strength to Weight: Bending, points 18
19
Thermal Shock Resistance, points 19
17

Alloy Composition

Aluminum (Al), % 0 to 0.050
0
Boron (B), % 3.3 to 4.0
0
Carbon (C), % 0 to 0.060
0 to 0.3
Chromium (Cr), % 13.5 to 16.5
0
Cobalt (Co), % 0 to 0.1
0
Iron (Fe), % 0 to 1.5
97 to 100
Manganese (Mn), % 0
0 to 1.0
Nickel (Ni), % 77.1 to 83.3
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Selenium (Se), % 0 to 0.0050
0
Silicon (Si), % 0
0 to 0.6
Sulfur (S), % 0 to 0.020
0 to 0.045
Titanium (Ti), % 0 to 0.050
0
Zirconium (Zr), % 0 to 0.050
0
Residuals, % 0
0 to 1.0