MakeItFrom.com
Menu (ESC)

AWS E209 vs. EN AC-51200 Aluminum

AWS E209 belongs to the iron alloys classification, while EN AC-51200 aluminum belongs to the aluminum alloys. There are 20 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E209 and the bottom bar is EN AC-51200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
67
Elongation at Break, % 17
1.1
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 79
25
Tensile Strength: Ultimate (UTS), MPa 770
220

Thermal Properties

Latent Heat of Fusion, J/g 300
410
Melting Completion (Liquidus), °C 1420
640
Melting Onset (Solidus), °C 1370
570
Specific Heat Capacity, J/kg-K 480
910
Thermal Expansion, µm/m-K 14
23

Otherwise Unclassified Properties

Base Metal Price, % relative 21
9.5
Density, g/cm3 7.8
2.6
Embodied Carbon, kg CO2/kg material 4.4
9.6
Embodied Energy, MJ/kg 63
150
Embodied Water, L/kg 180
1150

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
51
Strength to Weight: Axial, points 28
24
Strength to Weight: Bending, points 24
31
Thermal Shock Resistance, points 19
10

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
84.5 to 92
Carbon (C), % 0 to 0.060
0
Chromium (Cr), % 20.5 to 24
0
Copper (Cu), % 0 to 0.75
0 to 0.1
Iron (Fe), % 51.5 to 64.3
0 to 1.0
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
8.0 to 10.5
Manganese (Mn), % 4.0 to 7.0
0 to 0.55
Molybdenum (Mo), % 1.5 to 3.0
0
Nickel (Ni), % 9.5 to 12
0 to 0.1
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 2.5
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Vanadium (V), % 0.1 to 0.3
0
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15