MakeItFrom.com
Menu (ESC)

AWS E240 vs. AWS E316L

Both AWS E240 and AWS E316L are iron alloys. Both are furnished in the as-welded condition. They have 89% of their average alloy composition in common. There are 23 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is AWS E240 and the bottom bar is AWS E316L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
200
Elongation at Break, % 17
34
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 77
78
Tensile Strength: Ultimate (UTS), MPa 770
550

Thermal Properties

Latent Heat of Fusion, J/g 290
290
Melting Completion (Liquidus), °C 1390
1440
Melting Onset (Solidus), °C 1350
1390
Specific Heat Capacity, J/kg-K 480
470
Thermal Conductivity, W/m-K 15
15
Thermal Expansion, µm/m-K 15
14

Otherwise Unclassified Properties

Base Metal Price, % relative 14
20
Density, g/cm3 7.7
7.9
Embodied Carbon, kg CO2/kg material 3.0
4.0
Embodied Energy, MJ/kg 42
55
Embodied Water, L/kg 160
160

Common Calculations

PREN (Pitting Resistance) 22
27
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 28
19
Strength to Weight: Bending, points 24
19
Thermal Diffusivity, mm2/s 3.9
4.0
Thermal Shock Resistance, points 19
14

Alloy Composition

Carbon (C), % 0 to 0.060
0 to 0.040
Chromium (Cr), % 17 to 19
17 to 20
Copper (Cu), % 0 to 0.75
0 to 0.75
Iron (Fe), % 58.6 to 68.4
58.6 to 69.5
Manganese (Mn), % 10.5 to 13.5
0.5 to 2.5
Molybdenum (Mo), % 0 to 0.75
2.0 to 3.0
Nickel (Ni), % 4.0 to 6.0
11 to 14
Nitrogen (N), % 0.1 to 0.3
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030