MakeItFrom.com
Menu (ESC)

AWS E308L vs. C87800 Brass

AWS E308L belongs to the iron alloys classification, while C87800 brass belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS E308L and the bottom bar is C87800 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
110
Elongation at Break, % 40
25
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 78
42
Tensile Strength: Ultimate (UTS), MPa 580
590

Thermal Properties

Latent Heat of Fusion, J/g 290
260
Melting Completion (Liquidus), °C 1420
920
Melting Onset (Solidus), °C 1380
820
Specific Heat Capacity, J/kg-K 480
410
Thermal Conductivity, W/m-K 16
28
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.2
6.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.5
7.3

Otherwise Unclassified Properties

Base Metal Price, % relative 16
27
Density, g/cm3 7.8
8.3
Embodied Carbon, kg CO2/kg material 3.2
2.7
Embodied Energy, MJ/kg 46
44
Embodied Water, L/kg 150
300

Common Calculations

Stiffness to Weight: Axial, points 14
7.4
Stiffness to Weight: Bending, points 25
19
Strength to Weight: Axial, points 21
20
Strength to Weight: Bending, points 20
19
Thermal Diffusivity, mm2/s 4.1
8.3
Thermal Shock Resistance, points 15
21

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
0 to 0.15
Antimony (Sb), % 0
0 to 0.050
Arsenic (As), % 0
0 to 0.050
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0 to 0.75
80 to 84.2
Iron (Fe), % 62.9 to 72.5
0 to 0.15
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0
0 to 0.010
Manganese (Mn), % 0.5 to 2.5
0 to 0.15
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 9.0 to 11
0 to 0.2
Phosphorus (P), % 0 to 0.040
0 to 0.010
Silicon (Si), % 0 to 1.0
3.8 to 4.2
Sulfur (S), % 0 to 0.030
0 to 0.050
Tin (Sn), % 0
0 to 0.25
Zinc (Zn), % 0
12 to 16
Residuals, % 0
0 to 0.5