MakeItFrom.com
Menu (ESC)

AWS E309LMo vs. CC333G Bronze

AWS E309LMo belongs to the iron alloys classification, while CC333G bronze belongs to the copper alloys. There are 24 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown.

For each property being compared, the top bar is AWS E309LMo and the bottom bar is CC333G bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
120
Elongation at Break, % 34
13
Poisson's Ratio 0.28
0.34
Shear Modulus, GPa 79
45
Tensile Strength: Ultimate (UTS), MPa 580
710

Thermal Properties

Latent Heat of Fusion, J/g 300
230
Melting Completion (Liquidus), °C 1430
1080
Melting Onset (Solidus), °C 1390
1020
Specific Heat Capacity, J/kg-K 480
440
Thermal Conductivity, W/m-K 15
38
Thermal Expansion, µm/m-K 14
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 22
29
Density, g/cm3 7.9
8.3
Embodied Carbon, kg CO2/kg material 4.2
3.5
Embodied Energy, MJ/kg 59
56
Embodied Water, L/kg 180
380

Common Calculations

Stiffness to Weight: Axial, points 14
8.0
Stiffness to Weight: Bending, points 25
20
Strength to Weight: Axial, points 21
24
Strength to Weight: Bending, points 20
21
Thermal Diffusivity, mm2/s 3.9
10
Thermal Shock Resistance, points 15
24

Alloy Composition

Aluminum (Al), % 0
8.5 to 10.5
Bismuth (Bi), % 0
0 to 0.010
Carbon (C), % 0 to 0.040
0
Chromium (Cr), % 22 to 25
0 to 0.050
Copper (Cu), % 0 to 0.75
76 to 83
Iron (Fe), % 53.6 to 63.5
3.0 to 5.5
Lead (Pb), % 0
0 to 0.030
Magnesium (Mg), % 0
0 to 0.050
Manganese (Mn), % 0.5 to 2.5
0 to 3.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 12 to 14
3.7 to 6.0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.1
Sulfur (S), % 0 to 0.030
0
Tin (Sn), % 0
0 to 0.1
Zinc (Zn), % 0
0 to 0.5