MakeItFrom.com
Menu (ESC)

AWS E316L vs. EN 1.4864 Stainless Steel

Both AWS E316L and EN 1.4864 stainless steel are iron alloys. They have 76% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AWS E316L and the bottom bar is EN 1.4864 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
33
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 78
75
Tensile Strength: Ultimate (UTS), MPa 550
650

Thermal Properties

Latent Heat of Fusion, J/g 290
310
Melting Completion (Liquidus), °C 1440
1390
Melting Onset (Solidus), °C 1390
1340
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
13
Thermal Expansion, µm/m-K 14
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 20
30
Density, g/cm3 7.9
8.0
Embodied Carbon, kg CO2/kg material 4.0
5.3
Embodied Energy, MJ/kg 55
75
Embodied Water, L/kg 160
180

Common Calculations

PREN (Pitting Resistance) 27
17
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 19
23
Strength to Weight: Bending, points 19
21
Thermal Diffusivity, mm2/s 4.0
3.3
Thermal Shock Resistance, points 14
17

Alloy Composition

Carbon (C), % 0 to 0.040
0 to 0.15
Chromium (Cr), % 17 to 20
15 to 17
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 58.6 to 69.5
41.7 to 51
Manganese (Mn), % 0.5 to 2.5
0 to 2.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 11 to 14
33 to 37
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0 to 0.040
0 to 0.045
Silicon (Si), % 0 to 1.0
1.0 to 2.0
Sulfur (S), % 0 to 0.030
0 to 0.015