MakeItFrom.com
Menu (ESC)

AWS E316L vs. S17400 Stainless Steel

Both AWS E316L and S17400 stainless steel are iron alloys. They have 85% of their average alloy composition in common. There are 25 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is AWS E316L and the bottom bar is S17400 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
11 to 21
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 78
75
Tensile Strength: Ultimate (UTS), MPa 550
910 to 1390

Thermal Properties

Latent Heat of Fusion, J/g 290
280
Melting Completion (Liquidus), °C 1440
1440
Melting Onset (Solidus), °C 1390
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Conductivity, W/m-K 15
17
Thermal Expansion, µm/m-K 14
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.3
2.3
Electrical Conductivity: Equal Weight (Specific), % IACS 2.6
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 20
14
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.0
2.7
Embodied Energy, MJ/kg 55
39
Embodied Water, L/kg 160
130

Common Calculations

PREN (Pitting Resistance) 27
16
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 19
32 to 49
Strength to Weight: Bending, points 19
27 to 35
Thermal Diffusivity, mm2/s 4.0
4.5
Thermal Shock Resistance, points 14
30 to 46

Alloy Composition

Carbon (C), % 0 to 0.040
0 to 0.070
Chromium (Cr), % 17 to 20
15 to 17
Copper (Cu), % 0 to 0.75
3.0 to 5.0
Iron (Fe), % 58.6 to 69.5
70.4 to 78.9
Manganese (Mn), % 0.5 to 2.5
0 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 11 to 14
3.0 to 5.0
Niobium (Nb), % 0
0.15 to 0.45
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 1.0
0 to 1.0
Sulfur (S), % 0 to 0.030
0 to 0.030