MakeItFrom.com
Menu (ESC)

AWS E316LMn vs. AWS E410

Both AWS E316LMn and AWS E410 are iron alloys. They have 68% of their average alloy composition in common. There are 21 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AWS E316LMn and the bottom bar is AWS E410.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 23
23
Poisson's Ratio 0.28
0.28
Shear Modulus, GPa 79
76
Tensile Strength: Ultimate (UTS), MPa 620
580

Thermal Properties

Latent Heat of Fusion, J/g 300
270
Melting Completion (Liquidus), °C 1420
1450
Melting Onset (Solidus), °C 1370
1400
Specific Heat Capacity, J/kg-K 470
480
Thermal Expansion, µm/m-K 14
14

Otherwise Unclassified Properties

Base Metal Price, % relative 24
7.5
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.6
2.0
Embodied Energy, MJ/kg 64
28
Embodied Water, L/kg 180
100

Common Calculations

PREN (Pitting Resistance) 32
13
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 25
25
Strength to Weight: Axial, points 22
21
Strength to Weight: Bending, points 20
20
Thermal Shock Resistance, points 15
16

Alloy Composition

Carbon (C), % 0 to 0.040
0 to 0.12
Chromium (Cr), % 18 to 21
11 to 13.5
Copper (Cu), % 0 to 0.75
0 to 0.75
Iron (Fe), % 47.5 to 59.4
82.2 to 89
Manganese (Mn), % 5.0 to 8.0
0 to 1.0
Molybdenum (Mo), % 2.5 to 3.5
0 to 0.75
Nickel (Ni), % 15 to 18
0 to 0.7
Nitrogen (N), % 0.1 to 0.25
0
Phosphorus (P), % 0 to 0.040
0 to 0.040
Silicon (Si), % 0 to 0.9
0 to 0.9
Sulfur (S), % 0 to 0.030
0 to 0.030