MakeItFrom.com
Menu (ESC)

AWS E317L vs. EN 1.8895 Steel

Both AWS E317L and EN 1.8895 steel are iron alloys. They have 63% of their average alloy composition in common. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown.

For each property being compared, the top bar is AWS E317L and the bottom bar is EN 1.8895 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
26
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 79
73
Tensile Strength: Ultimate (UTS), MPa 580
400

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Melting Completion (Liquidus), °C 1450
1460
Melting Onset (Solidus), °C 1400
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 15
49
Thermal Expansion, µm/m-K 14
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 2.1
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 2.4
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 22
2.2
Density, g/cm3 7.9
7.8
Embodied Carbon, kg CO2/kg material 4.3
1.6
Embodied Energy, MJ/kg 59
21
Embodied Water, L/kg 170
47

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 25
24
Strength to Weight: Axial, points 20
14
Strength to Weight: Bending, points 20
15
Thermal Diffusivity, mm2/s 3.9
13
Thermal Shock Resistance, points 15
12

Alloy Composition

Aluminum (Al), % 0
0.020 to 0.060
Carbon (C), % 0 to 0.040
0 to 0.13
Chromium (Cr), % 18 to 21
0
Copper (Cu), % 0 to 0.75
0
Iron (Fe), % 56.6 to 66.5
97 to 99.98
Manganese (Mn), % 0.5 to 2.5
0 to 1.5
Molybdenum (Mo), % 3.0 to 4.0
0 to 0.2
Nickel (Ni), % 12 to 14
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0 to 0.040
0 to 0.035
Silicon (Si), % 0 to 1.0
0 to 0.5
Sulfur (S), % 0 to 0.030
0 to 0.030
Titanium (Ti), % 0
0 to 0.050
Vanadium (V), % 0
0 to 0.080