MakeItFrom.com
Menu (ESC)

AWS E320LR vs. ASTM Grade LCB Steel

Both AWS E320LR and ASTM grade LCB steel are iron alloys. They have a modest 38% of their average alloy composition in common, which, by itself, doesn't mean much. There are 20 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is AWS E320LR and the bottom bar is ASTM grade LCB steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
27
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
72
Tensile Strength: Ultimate (UTS), MPa 580
540

Thermal Properties

Latent Heat of Fusion, J/g 300
250
Melting Completion (Liquidus), °C 1410
1450
Melting Onset (Solidus), °C 1360
1410
Specific Heat Capacity, J/kg-K 460
470
Thermal Expansion, µm/m-K 14
12

Otherwise Unclassified Properties

Base Metal Price, % relative 36
1.8
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 6.2
1.4
Embodied Energy, MJ/kg 87
18
Embodied Water, L/kg 220
45

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
19
Strength to Weight: Bending, points 19
19
Thermal Shock Resistance, points 15
17

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.030
0 to 0.3
Chromium (Cr), % 19 to 21
0
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 32.7 to 42.5
97 to 100
Manganese (Mn), % 1.5 to 2.5
0 to 1.0
Molybdenum (Mo), % 2.0 to 3.0
0
Nickel (Ni), % 32 to 36
0
Niobium (Nb), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.3
0 to 0.6
Sulfur (S), % 0 to 0.015
0 to 0.045
Residuals, % 0
0 to 1.0