MakeItFrom.com
Menu (ESC)

AWS E320LR vs. AWS ER80S-B3L

Both AWS E320LR and AWS ER80S-B3L are iron alloys. They have 42% of their average alloy composition in common. There are 21 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown.

For each property being compared, the top bar is AWS E320LR and the bottom bar is AWS ER80S-B3L.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
190
Elongation at Break, % 34
19
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 77
74
Tensile Strength: Ultimate (UTS), MPa 580
630

Thermal Properties

Latent Heat of Fusion, J/g 300
260
Melting Completion (Liquidus), °C 1410
1460
Melting Onset (Solidus), °C 1360
1420
Specific Heat Capacity, J/kg-K 460
470
Thermal Expansion, µm/m-K 14
13

Otherwise Unclassified Properties

Base Metal Price, % relative 36
4.1
Density, g/cm3 8.2
7.8
Embodied Carbon, kg CO2/kg material 6.2
1.8
Embodied Energy, MJ/kg 87
23
Embodied Water, L/kg 220
60

Common Calculations

PREN (Pitting Resistance) 28
6.0
Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
24
Strength to Weight: Axial, points 20
22
Strength to Weight: Bending, points 19
21
Thermal Shock Resistance, points 15
18

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0 to 0.030
0 to 0.050
Chromium (Cr), % 19 to 21
2.3 to 2.7
Copper (Cu), % 3.0 to 4.0
0 to 0.35
Iron (Fe), % 32.7 to 42.5
93.6 to 96
Manganese (Mn), % 1.5 to 2.5
0.4 to 0.7
Molybdenum (Mo), % 2.0 to 3.0
0.9 to 1.2
Nickel (Ni), % 32 to 36
0 to 0.2
Niobium (Nb), % 0 to 0.4
0
Phosphorus (P), % 0 to 0.020
0 to 0.025
Silicon (Si), % 0 to 0.3
0.4 to 0.7
Sulfur (S), % 0 to 0.015
0 to 0.025
Residuals, % 0
0 to 0.5