MakeItFrom.com
Menu (ESC)

AWS E330 vs. 5456 Aluminum

AWS E330 belongs to the iron alloys classification, while 5456 aluminum belongs to the aluminum alloys. There are 24 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E330 and the bottom bar is 5456 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
68
Elongation at Break, % 29
11 to 18
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 76
26
Tensile Strength: Ultimate (UTS), MPa 580
320 to 340

Thermal Properties

Latent Heat of Fusion, J/g 300
390
Melting Completion (Liquidus), °C 1400
640
Melting Onset (Solidus), °C 1350
570
Specific Heat Capacity, J/kg-K 470
900
Thermal Conductivity, W/m-K 12
120
Thermal Expansion, µm/m-K 13
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
29
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
97

Otherwise Unclassified Properties

Base Metal Price, % relative 31
9.5
Density, g/cm3 8.1
2.7
Embodied Carbon, kg CO2/kg material 5.4
9.0
Embodied Energy, MJ/kg 75
150
Embodied Water, L/kg 180
1170

Common Calculations

Stiffness to Weight: Axial, points 13
14
Stiffness to Weight: Bending, points 24
50
Strength to Weight: Axial, points 20
33 to 35
Strength to Weight: Bending, points 19
38 to 40
Thermal Diffusivity, mm2/s 3.2
48
Thermal Shock Resistance, points 16
14 to 15

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Aluminum (Al), % 0
92 to 94.8
Carbon (C), % 0.18 to 0.25
0
Chromium (Cr), % 14 to 17
0.050 to 0.2
Copper (Cu), % 0 to 0.75
0 to 0.1
Iron (Fe), % 40.7 to 51.8
0 to 0.4
Magnesium (Mg), % 0
4.7 to 5.5
Manganese (Mn), % 1.0 to 2.5
0.5 to 1.0
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 33 to 37
0
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.25
Sulfur (S), % 0 to 0.030
0
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0
0 to 0.25
Residuals, % 0
0 to 0.15