MakeItFrom.com
Menu (ESC)

AWS E330 vs. WE54A Magnesium

AWS E330 belongs to the iron alloys classification, while WE54A magnesium belongs to the magnesium alloys. There are 24 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E330 and the bottom bar is WE54A magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
44
Elongation at Break, % 29
4.3 to 5.6
Poisson's Ratio 0.29
0.29
Shear Modulus, GPa 76
17
Tensile Strength: Ultimate (UTS), MPa 580
270 to 300

Thermal Properties

Latent Heat of Fusion, J/g 300
330
Melting Completion (Liquidus), °C 1400
640
Melting Onset (Solidus), °C 1350
570
Specific Heat Capacity, J/kg-K 470
960
Thermal Conductivity, W/m-K 12
52
Thermal Expansion, µm/m-K 13
25

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
10
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
47

Otherwise Unclassified Properties

Base Metal Price, % relative 31
34
Density, g/cm3 8.1
1.9
Embodied Carbon, kg CO2/kg material 5.4
29
Embodied Energy, MJ/kg 75
260
Embodied Water, L/kg 180
900

Common Calculations

Stiffness to Weight: Axial, points 13
13
Stiffness to Weight: Bending, points 24
62
Strength to Weight: Axial, points 20
39 to 43
Strength to Weight: Bending, points 19
49 to 51
Thermal Diffusivity, mm2/s 3.2
28
Thermal Shock Resistance, points 16
18 to 19

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.18 to 0.25
0
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0 to 0.75
0 to 0.030
Iron (Fe), % 40.7 to 51.8
0 to 0.010
Lithium (Li), % 0
0 to 0.2
Magnesium (Mg), % 0
88.7 to 93.4
Manganese (Mn), % 1.0 to 2.5
0 to 0.030
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 33 to 37
0 to 0.0050
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0 to 0.010
Sulfur (S), % 0 to 0.030
0
Unspecified Rare Earths, % 0
1.5 to 4.0
Yttrium (Y), % 0
4.8 to 5.5
Zinc (Zn), % 0
0 to 0.2
Zirconium (Zr), % 0
0.4 to 1.0
Residuals, % 0
0 to 0.3