MakeItFrom.com
Menu (ESC)

AWS E330H vs. C71500 Copper-nickel

AWS E330H belongs to the iron alloys classification, while C71500 copper-nickel belongs to the copper alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 23 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown.

For each property being compared, the top bar is AWS E330H and the bottom bar is C71500 copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 190
140
Poisson's Ratio 0.29
0.33
Shear Modulus, GPa 76
52
Tensile Strength: Ultimate (UTS), MPa 690
380 to 620

Thermal Properties

Latent Heat of Fusion, J/g 290
230
Melting Completion (Liquidus), °C 1400
1240
Melting Onset (Solidus), °C 1350
1170
Specific Heat Capacity, J/kg-K 470
400
Thermal Conductivity, W/m-K 12
28
Thermal Expansion, µm/m-K 13
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
4.6
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
4.7

Otherwise Unclassified Properties

Base Metal Price, % relative 30
41
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 5.4
5.1
Embodied Energy, MJ/kg 76
74
Embodied Water, L/kg 180
280

Common Calculations

Stiffness to Weight: Axial, points 13
8.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 24
12 to 19
Strength to Weight: Bending, points 22
13 to 18
Thermal Diffusivity, mm2/s 3.2
7.7
Thermal Shock Resistance, points 19
12 to 20

Alloy Composition


Deprecated: Automatic conversion of false to array is deprecated in /home/public/compare.php on line 460
Carbon (C), % 0.35 to 0.45
0
Chromium (Cr), % 14 to 17
0
Copper (Cu), % 0 to 0.75
63.5 to 70.6
Iron (Fe), % 40.5 to 51.7
0.4 to 1.0
Lead (Pb), % 0
0 to 0.050
Manganese (Mn), % 1.0 to 2.5
0 to 1.0
Molybdenum (Mo), % 0 to 0.75
0
Nickel (Ni), % 33 to 37
29 to 33
Phosphorus (P), % 0 to 0.040
0
Silicon (Si), % 0 to 1.0
0
Sulfur (S), % 0 to 0.030
0
Zinc (Zn), % 0
0 to 1.0
Residuals, % 0
0 to 0.5