MakeItFrom.com
Menu (ESC)

AWS E383 vs. CC381H Copper-nickel

AWS E383 belongs to the iron alloys classification, while CC381H copper-nickel belongs to the copper alloys. They have a modest 33% of their average alloy composition in common, which, by itself, doesn't mean much. There are 22 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown.

For each property being compared, the top bar is AWS E383 and the bottom bar is CC381H copper-nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
140
Elongation at Break, % 34
20
Poisson's Ratio 0.28
0.33
Shear Modulus, GPa 80
52
Tensile Strength: Ultimate (UTS), MPa 580
380

Thermal Properties

Latent Heat of Fusion, J/g 320
240
Melting Completion (Liquidus), °C 1420
1180
Melting Onset (Solidus), °C 1370
1120
Specific Heat Capacity, J/kg-K 470
410
Thermal Conductivity, W/m-K 12
30
Thermal Expansion, µm/m-K 14
16

Otherwise Unclassified Properties

Base Metal Price, % relative 37
40
Density, g/cm3 8.1
8.9
Embodied Carbon, kg CO2/kg material 6.4
5.0
Embodied Energy, MJ/kg 89
73
Embodied Water, L/kg 240
280

Common Calculations

Stiffness to Weight: Axial, points 14
8.6
Stiffness to Weight: Bending, points 24
19
Strength to Weight: Axial, points 20
12
Strength to Weight: Bending, points 19
13
Thermal Diffusivity, mm2/s 3.1
8.4
Thermal Shock Resistance, points 15
13

Alloy Composition

Aluminum (Al), % 0
0 to 0.010
Carbon (C), % 0 to 0.030
0 to 0.030
Chromium (Cr), % 26.5 to 29
0
Copper (Cu), % 0.6 to 1.5
64.5 to 69.9
Iron (Fe), % 28.8 to 39.2
0.5 to 1.5
Lead (Pb), % 0
0 to 0.030
Manganese (Mn), % 0.5 to 2.5
0.6 to 1.2
Molybdenum (Mo), % 3.2 to 4.2
0
Nickel (Ni), % 30 to 33
29 to 31
Phosphorus (P), % 0 to 0.020
0 to 0.010
Silicon (Si), % 0 to 0.9
0 to 0.1
Sulfur (S), % 0 to 0.020
0 to 0.010
Zinc (Zn), % 0
0 to 0.5