MakeItFrom.com
Menu (ESC)

AWS E383 vs. S44635 Stainless Steel

Both AWS E383 and S44635 stainless steel are iron alloys. They have 68% of their average alloy composition in common. There are 23 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown.

For each property being compared, the top bar is AWS E383 and the bottom bar is S44635 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 210
210
Elongation at Break, % 34
23
Poisson's Ratio 0.28
0.27
Shear Modulus, GPa 80
81
Tensile Strength: Ultimate (UTS), MPa 580
710

Thermal Properties

Latent Heat of Fusion, J/g 320
300
Melting Completion (Liquidus), °C 1420
1460
Melting Onset (Solidus), °C 1370
1420
Specific Heat Capacity, J/kg-K 470
470
Thermal Conductivity, W/m-K 12
16
Thermal Expansion, µm/m-K 14
11

Otherwise Unclassified Properties

Base Metal Price, % relative 37
22
Density, g/cm3 8.1
7.8
Embodied Carbon, kg CO2/kg material 6.4
4.4
Embodied Energy, MJ/kg 89
62
Embodied Water, L/kg 240
170

Common Calculations

PREN (Pitting Resistance) 40
39
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 24
25
Strength to Weight: Axial, points 20
25
Strength to Weight: Bending, points 19
23
Thermal Diffusivity, mm2/s 3.1
4.4
Thermal Shock Resistance, points 15
23

Alloy Composition

Carbon (C), % 0 to 0.030
0 to 0.025
Chromium (Cr), % 26.5 to 29
24.5 to 26
Copper (Cu), % 0.6 to 1.5
0
Iron (Fe), % 28.8 to 39.2
61.5 to 68.5
Manganese (Mn), % 0.5 to 2.5
0 to 1.0
Molybdenum (Mo), % 3.2 to 4.2
3.5 to 4.5
Nickel (Ni), % 30 to 33
3.5 to 4.5
Niobium (Nb), % 0
0.2 to 0.8
Nitrogen (N), % 0
0 to 0.035
Phosphorus (P), % 0 to 0.020
0 to 0.040
Silicon (Si), % 0 to 0.9
0 to 0.75
Sulfur (S), % 0 to 0.020
0 to 0.030
Titanium (Ti), % 0
0.2 to 0.8