MakeItFrom.com
Menu (ESC)

AWS E385 vs. ISO-WD32260 Magnesium

AWS E385 belongs to the iron alloys classification, while ISO-WD32260 magnesium belongs to the magnesium alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is AWS E385 and the bottom bar is ISO-WD32260 magnesium.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 200
46
Elongation at Break, % 34
4.5 to 6.0
Poisson's Ratio 0.28
0.29
Shear Modulus, GPa 79
18
Tensile Strength: Ultimate (UTS), MPa 580
330 to 340

Thermal Properties

Latent Heat of Fusion, J/g 300
330
Melting Completion (Liquidus), °C 1440
600
Melting Onset (Solidus), °C 1390
520
Specific Heat Capacity, J/kg-K 460
970
Thermal Conductivity, W/m-K 14
110
Thermal Expansion, µm/m-K 14
27

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 1.7
28
Electrical Conductivity: Equal Weight (Specific), % IACS 1.9
140

Otherwise Unclassified Properties

Base Metal Price, % relative 31
13
Density, g/cm3 8.1
1.9
Embodied Carbon, kg CO2/kg material 5.8
23
Embodied Energy, MJ/kg 79
160
Embodied Water, L/kg 200
940

Common Calculations

Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 24
63
Strength to Weight: Axial, points 20
48 to 51
Strength to Weight: Bending, points 19
56 to 58
Thermal Diffusivity, mm2/s 3.6
63
Thermal Shock Resistance, points 15
19 to 20

Alloy Composition

Carbon (C), % 0 to 0.030
0
Chromium (Cr), % 19.5 to 21.5
0
Copper (Cu), % 1.2 to 2.0
0
Iron (Fe), % 41.8 to 50.1
0
Magnesium (Mg), % 0
92.7 to 94.8
Manganese (Mn), % 1.0 to 2.5
0
Molybdenum (Mo), % 4.2 to 5.2
0
Nickel (Ni), % 24 to 26
0
Phosphorus (P), % 0 to 0.030
0
Silicon (Si), % 0 to 0.9
0
Sulfur (S), % 0 to 0.020
0
Zinc (Zn), % 0
4.8 to 6.2
Zirconium (Zr), % 0
0.45 to 0.8
Residuals, % 0
0 to 0.3